

Edition 4.0 2025-07

TECHNICAL REPORT

REDLINE VERSION

Audio/video, information and communication technology equipment -Part 2: Explanatory information related to IEC 62368-1:2023

CONTENTS

FC	OREWO	RD	8
IN	NTRODUCTION1		
0	Princ	iples of this product safety standard	12
1	Scop	e	15
2	Norm	native references	15
3	Term	s, definitions and abbreviations	15
4	Gene	eral requirements	18
	4.2	Energy source classifications	21
	4.6	Fixing of conductors and conductive parts	25
	4.7	Equipment for direct insertion into mains socket-outlets	26
	4.8	Equipment containing coin or button cell batteries	26
	4.9	Likelihood of fire or shock due to entry of conductive objects	27
5	Elect	rically-caused injury	27
	5.4	Insulation materials and requirements	43
	5.5	Components as safeguards	70
	5.6	Protective conductor	73
	5.7	Prospective touch voltage, touch current and protective conductor current	75
	5.8	Backfeed safeguard in battery backed up supplies	80
6	Elect	rically-caused fire	82
	6.2	Classification of power sources and potential ignition sources	82
	6.3	Safeguards against fire under normal operating conditions and abnormal operating conditions	86
	6.4	Safeguards against fire under single fault conditions	92
	6.6	Safeguards against fire due to the connection of additional equipment	120
7	Injury	y caused by hazardous substances	120
8	Mech	nanically-caused injury	124
	8.1	General	124
	8.2	Mechanical energy source classifications	124
	8.3	Safeguards against mechanical energy sources	125
	8.4	Safeguards against parts with sharp edges and corners	126
	8.5	Safeguards against moving parts	
	8.6	Stability of equipment	127
	8.7	Equipment mounted to a wall, ceiling or other structure	128
	8.8	Handle strength	129
	8.9	Wheels or casters attachment requirements	129
	8.10	Carts, stands, and similar carriers	129
	8.11	Mounting means for slide-rail mounted equipment (SRME)	130
9	Ther	mal burn injury	131
	9.1	General	131
	9.2	Thermal energy source classifications	135
	9.3	Touch temperature limits	
	9.4	Safeguards against thermal energy sources	
	9.6	Requirements for wireless power transmitters	
10) Radi	ation	
	10.2	Radiation energy source classifications	142
	10.3	Safeguards against laser radiation	145

10.4	Safeguards against optical radiation from lamps and lamp systems (including LED types)	145
10.5	Safeguards against X-radiation	
10.6	Safeguards against acoustic energy sources	
Annex A	Examples of equipment within the scope of this standard IEC 62368-1	
Annex B	Normal operating condition tests, abnormal operating condition tests	
	and single fault condition tests	149
B.1	General – Equipment safeguards during various operating conditions	149
B.2 – E	B.3 – B.4 Operating modes	153
Annex C	UV radiation	154
Annex D	Test generators	154
Annex E	Test conditions for equipment-containing audio amplifiers intended to	
amplify a	udio signals	154
Annex F	Equipment markings, instructions, and instructional safeguards	155
F.3	Equipment markings	155
F.4	Instructions	161
F.5	Instructional safeguards	161
Annex G	Components	162
G.1	Switches	162
G.7	Mains power supply cords and interconnection cables	166
G.8	Varistors	166
G.9	Integrated circuit (IC) current limiters	167
G.11	Capacitors and RC units	168
G.13	Printed boards	172
G.14	Coatings on component terminals	172
G.15	Pressurized liquid filled components or LFC assemblies	172
Annex H	Criteria for telephone ringing signals	179
H.2	Method A	179
H.3	Method B	181
Annex J	Insulated winding wires for use without interleaved insulation	181
Annex K	Safety interlocks	181
K.7.1	Safety interlocks	181
Annex L	Disconnect devices	182
Annex M	Equipment containing batteries and their protection circuits	183
M.1	General requirements	183
M.2	Safety of batteries and their cells	183
M.3	Protection circuits for batteries provided within the equipment	191
M.4	Additional safeguards for equipment containing a secondary lithium battery	191
Annex O	Measurement of creepage distances and clearances	194
Annex P	Safeguards against conductive objects	195
P.1	General	195
P.2	Safeguards against entry or consequences of entry of a foreign object	195
P.3	Safeguards against spillage of internal liquids	
P.4	Metallized coatings and adhesives securing parts	
Annex Q	Circuits intended for interconnection with building wiring	
Q.2	Test for external circuits – paired conductor cable	197
Annex R	Limited short-circuit test	

Annex S	Tests for resistance to heat and fire	198
S.1	Flammability test for fire enclosure and fire barrier materials of equipment where the steady-state power does not exceed 4 000 W	198
S.2	Flammability test for fire enclosure and fire barrier integrity	
S.3	Flammability tests for the bottom of a fire enclosure	
S.4	Flammability classification of materials	
S.5	Flammability test for fire enclosure materials of equipment with a steady	
-	state power exceeding 4 000 W	199
S.6	Grille covering material, cloth, and reticulated foam	200
Annex T	Mechanical strength tests	200
T.2	Steady force test, 10 N	200
Т.3	Steady force test, 30 N	200
T.4	Steady force test, 100 N	200
T.5	Steady force test, 250 N	200
T.6	Enclosure impact test	200
T.7	Drop test	201
T.8	Stress relief test	201
T.9	Glass impact test	201
T.10	Glass fragmentation test	201
Annex U	Mechanical strength of CRTs and protection against the effects of implosion	201
U.2	Test method and compliance criteria for non-intrinsically protected CRTs	
Annex V	Determination of accessible parts	
Annex X	Alternative method for determining clearances for insulation in circuits	
Annex X	connected to an AC mains not exceeding 420 V peak (300 V RMS)	202
Annex Y	Construction requirements for outdoor enclosures	203
Y.3	Resistance to corrosion	204
	(informative) Background information related to the use of SPDs surge	205
	ors	
A.1	Industry demand for incorporating <u>SPDs</u> surge suppressors in the equipment.	
	Technical environment of relevant component standards	
A.3 A.2	Technical discussion	
	Considerations on surge suppressors bridging both sides of a safeguard Considerations on a surge suppresser used for ID1 external circuit in class II	
A.3	equipment	212
A.4	Information about follow current (or follow-on current)	207
	(informative) Background information related to measurement of discharges ining the R-C discharge time constant for X and Y capacitors	
B.1	General	
B.2	EMC filters	
B.3	The safety issue and solution	
B.4	The requirement	
B.5	100 MΩ probes	
B.6	The R-C time constant and its parameters	
B.7	Time constant measurement.	
B.8	Effect of probe resistance	
B.9		
-	Effect of probe capacitance	236
B.10 B.11		236 236

Annex C (informative) Background information related to resistance to candle flame ignition	239
Annex D (informative) Surge suppressers used between mains and an external circuit ID1 as specified in Table 13	240
Bibliography	
Figure 1 – Risk reduction as given in ISO/IEC Guide 51	
Figure 2 – HBSE Process Chart	
Figure 3 – Protective bonding conductor as part of a safeguard	18
Figure 4 – Safeguards for protecting an ordinary person	
Figure 5 – Safeguards for protecting an instructed person	22
Figure 6 – Safeguards for protecting a skilled person	
Figure 7 – Flow chart showing the intent of the glass requirements	25
Figure 8 – Conventional time/current zones of effects of AC currents (15 Hz to 100 Hz) on persons for a current path corresponding to left hand to feet (see IEC TS 60479- 1: 2005 2018, Figure 20)	30
Figure 9 – Conventional time/current zones of effects of DC currents on persons for a longitudinal upward current path (see IEC -TS 60479-1: 2005 2018, Figure 22)	31
Figure 10 – Illustration that limits depend on both voltage and current	32
Figure 11 – Typical example	39
Figure 12 – Example 1	40
Figure 13 – Example 2	40
Figure 14 – Flow chart for determining clearances	47
Figure 15 – Illustration of working voltage	48
Figure 16 – Illustration of transient voltages on paired conductor external circuits	50
Figure 17 – Illustration of transient voltages on coaxial-cable external circuits	51
Figure 18 – Examples of transmission mode and applied conductors	52
Figure 19 – Basic and reinforced insulation in Table 14 of IEC 62368-1:2018 ; ratio reinforced to basic	53
Figure 20 – Reinforced clearances according to Rule 1, Rule 2, and Table 14	55
Figure 21 – Example illustrating accessible internal wiring	63
Figure 22 – Waveform on insulation without surge suppressors and no breakdown	66
Figure 23 – Waveforms on insulation during breakdown without surge suppressors	66
Figure 24 – Waveforms on insulation with surge suppressors in operation	66
Figure 25 – Waveform on short-circuited surge suppressor and insulation	67
Figure 26 – Normal operating condition	68
Figure 27 – Single fault condition	68
Figure 28 – Single fault condition; hazardous situation if 5.4.11 is not fulfilled	69
Figure 29 – Parts earthed in one piece of equipment	69
Figure 30 – Equipment 2 with connection to a network	70
Figure 31 – Example for an ES2 source	70
Figure 32 – Example for an ES3 source	71
Figure 33 – Overview of protective conductors	73
Figure 34 – Example of a typical touch current measuring network	76
Figure 35 – Touch current from a floating circuit	78

Figure 36 – Touch current from an earthed circuit	78
Figure 37 – Summation of touch currents in a PABX	79
Figure 38 – Possible safeguards against electrically-caused fire	86
Figure 39 – Fire clause flow chart	89
Figure 40 – Prevent ignition flow chart	95
Figure 41 – Control fire spread summary	96
Figure 42 – Control fire spread PS2	97
Figure 43 – Control fire spread PS3	98
Figure 44 – Fire cone application to a large component	110
Figure 45 – Calculation of side opening size	117
Figure 46 – Flowchart demonstrating the hierarchy of hazard management	123
Figure 47 – Model for chemical injury	124
Figure 48 – Direction of forces to be applied	128
Figure 49 – Model for a burn injury	132
Figure 50 – Model for safeguards against thermal burn injury	134
Figure 51 – Model for absence of a thermal hazard	134
Figure 52 – Model for presence of a thermal hazard with a physical safeguard in place	134
Figure 53 – Model for presence of a thermal hazard with behavioural safeguard in	
place	
Figure 54 – Direct plug in	
Figure 55 – External power supply	
Figure 56 – Examples of symmetrical single coils	
Figure 57 – LED parameters	
Figure 58 – Flowchart for evaluation of Image projectors (beamers)	
Figure 59 – Graphical representation of <i>L</i> Aeq, <i>T</i>	146
Figure 60 – Overview of operating modes	153
Figure 61 – Typical examples of class I equipment	156
Figure 62 – Typical examples of class I equipment with class II construction	157
Figure 63 – Typical examples of class II equipment	158
Figure 64 – Typical examples of class II equipment with functional earth	159
Figure 65 – Typical examples of class II equipment with functional earth, making use of a class I mains connector	160
Figure 66 – Typical examples of class II equipment with functional earth, making use of a class I mains connector and a separate functional earthing connection	161
Figure 67 – Voltage-current characteristics (Typical data)	163
Figure 68 – Example of IC current limiter circuit	168
Figure 69 – Example of application of Rule 3, first dash	170
Figure 70 – Example of application of Rule 3, second dash	171
Figure 71 – Example on how to use Table G.12	171
Figure 72 – Decision flowchart	173
Figure 73 – Illustration of a self-contained LFC system	175
Figure 74 – Illustration of a modular LFC system	176
Figure 75 – Example illustration of a rack modular LFC subsystems with internal and external connections.	177

Figure 76 – CDU liquid cooling system within a data centre	178
Figure 77 – Non-CDU liquid cooling system within data centre	178
Figure 78 – Current limit curves	180
Figure 79 – Example of a dummy battery circuit	192
Figure 80 – Calculating side openings	196
Figure 81 – Example of a circuit with two power sources	198
Figure A.1 – Installation has poor earthing and bonding; equipment damaged (from ITU-T Recommendation K.66)	206
Figure A.2 – Installation has poor earthing and bonding; using main earth bar for protection against lightning strike (from ITU-T Recommendation K.66)	206
Figure A.3 – Installation with poor earthing and bonding, using a varistor and a GDT for protection against a lightning strike	207
Figure A.4 – Typical example of a surge suppressor and a voltage fall	207
Figure A.4 - Installation with poor earthing and bonding; equipment damaged (TV set)	
Figure A.5 – Safeguards	
Figure A.5 – An example of surge voltage drop by an MOV and two GDTs (measured in laboratory)	213
Figure A.6 – Discharge stages	
Figure A.6 – An example of ports of telecommunication equipment	217
Figure A.8 – Discharge	
Figure A.7 – <i>V</i> - <i>I</i> properties of gas discharge tubes	
Figure A.8 – Holdover	220
Figure A.9 – Relation of the <i>V</i> - <i>I</i> characteristic of a gas discharge tube and the output characteristic of the power supply	221
Figure A.10 – <i>V</i> - <i>I</i> and <i>V</i> - <i>t</i> characteristics	224
Figure A.11 – Follow-on current pictures	225
Figure B.1 – Typical EMC filter schematic	
Figure B.2 – 100 M Ω oscilloscope probes	229
Figure B.3 – Combinations of EUT resistance and capacitance for 1 s time constant	231
Figure B.4 – 240 V mains followed by capacitor discharge	
Figure B.5 – Time constant measurement schematic	234
Figure B.6 – Worst-case measured time constant values for 100 $M\Omega$ and 10 $M\Omega$ probes	238
Figure D.1 – Example of circuit configuration of a surge suppresser	240
Table 1 – General summary of required safeguards	23
Table 2 – Time/current zones for AC 15 Hz to 100 Hz for hand to feet pathway (see IEC TS 60479-1: 2005 2018, Table 11)	30
Table 3 – Time/current zones for DC for hand to feet pathway (see IEC-TS 60479-1:20052018, Table 13)	
Table 4 – Limit values of accessible capacitance (threshold of pain)	34
Table 5 – Total body resistances R_{T} for a current path hand to hand, DC, for large	
surface areas of contact in dry condition	
Table 6 – Insulation requirements for external circuits	
Table 7 – Voltage drop across clearance and solid insulation in series	
Table 8 – Examples of application of various safeguards	88

Table 9 – Basic safeguards against fire under normal operating conditions and abnormal operating conditions	91
Table 10 – Supplementary safeguards against fire under single fault conditions	
Table 11 – Method 1: Reduce the likelihood of ignition	
Table 12 – Method 2: Control fire spread	
Table 13 – Fire barrier and fire enclosure flammability requirements	112
Table 14 – Summary – Fire enclosure and fire barrier material requirements	116
Table 15 – Control of chemical hazards	122
Table 16 – Overview of requirements for dose-based systems	148
Table 17 – Overview of supply voltage	152
Table 18 – Safety of batteries and their cells – requirements (expanded information on documents and scope)	185
Table A.1 – Permissible power-frequency stress voltage (except for US and Japan)	213
Table A.2 – TOV parameters for US systems quoted from IEC 61643-12:2020	214
Table A.3 – TOV test parameters for Japanese systems quoted from IEC 61643-12:2020	214
Table A.4 – Peak voltage of TOV in countries conforming to IEC 60364-4-44	215
Table A.5 – Peak voltage of TOV in USA	215
Table A.6 – Peak voltage of TOV in Japan	215
Table A.7 – The value of U_{peak2} for major mains voltages	216
Table B.1 – 100 MΩ oscilloscope probes	229
Table B.2 – Capacitor discharge	230
Table B.3 – Maximum $T_{measured}$ values for combinations of R_{EUT} and C_{EUT} for	
<i>T</i> _{EUT} of 1 s	237

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Audio/video, information and communication technology equipment -Part 2: Explanatory information related to IEC 62368-1:2023

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC TR 62368-2:2018. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

IEC TR 62368-2 has been prepared by IEC technical committee TC 108: Safety of electronic equipment within the field of audio/video, information technology and communication technology. It is a Technical Report.

This fourth edition cancels and replaces the third edition published in 2018. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) It takes into account changes made in the fourth edition of IEC 62368-1 (IEC 62368-1:2023) as identified in the Foreword of IEC 62368-1:2023.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
108/794/DTR	108/825/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

In this document, the following print types are used:

- notes/explanatory matter: in smaller roman type;
- tables and figures that are included in the rationale have linked fields (shaded in grey if "field shading" is active);
- terms that are defined in IEC 62368-1: in **bold type**.

Where coloured shading is used:

- green colour stands for level 1 energy sources
- yellow/orange colour stands for level 2 energy sources
- red colour stands for level 3 energy sources.

In this document, where the term (HBSDT) is used, it stands for Hazard Based Standard Development Team, which is the Working Group of IEC TC 108 responsible for the development and maintenance of IEC 62368-1.

A list of all parts of the IEC 62368 series can be found, under the general title Audio/video, information and communication technology equipment, on the IEC website.

In this document, only those subclauses from IEC 62368-1 considered to need further background reference information or explanation to benefit the user in applying the relevant requirements are included. Therefore, not all numbered subclauses are cited. Unless otherwise noted, all references are to clauses, subclauses, annexes, figures or tables located in IEC 62368-1:2023.

The entries in this document can have one or two of the following subheadings in addition to the Rationale statement:

Source – where the source is known and is a document that is accessible to the general public, a reference is provided.

Purpose – where there is a need and when it can prove helpful to the understanding of the Rationale, a Purpose statement has been added.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

IEC 62368-1 is based on the principles of hazard-based safety engineering, which is a different way of developing and specifying safety considerations than that of the current practice. While IEC 62368-1 is different from traditional IEC safety documents in its approach and while it is believed that IEC 62368-1 provides a number of advantages, its introduction and evolution are not intended to result in significant changes to the existing safety philosophy that led to the development of the safety requirements contained in IEC 60065 and IEC 60950-1. The predominant reason behind the creation of IEC 62368-1 is to simplify the problems created by the merging of the technologies of ITE and CE. The techniques used are novel, so a learning process is required and experience is needed in its application and experience in its application are needed. Consequently, the committee recommends that this edition of the document be considered as an alternative to IEC 60065 or IEC 60950-1 at least over the recommended transition period.

0 Principles of this product safety standard

Clause 0 is <u>informational</u> informative and provides a rationale for the normative clauses of <u>the document</u> IEC 62368-1:2023.

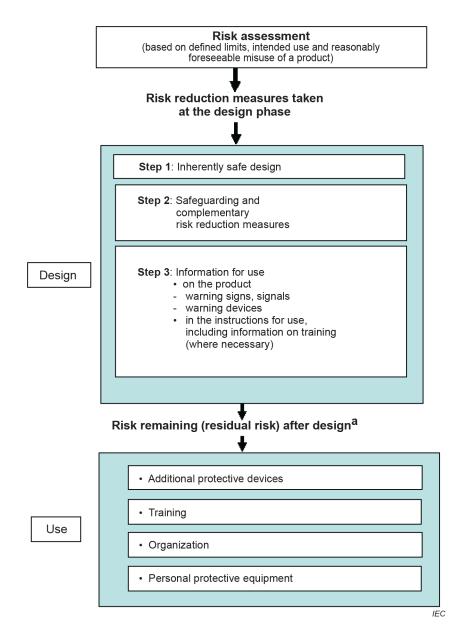
0.5.1 General

ISO/IEC Guide 51:2014, 6.3.5 states:

"When reducing risks, the order of priority shall be as follows:

- a) inherently safe design;
- b) guards and protective devices;
- c) information for end users.

Inherently safe design measures are the first and most important step in the risk reduction process. This is because protective measures inherent to the characteristics of the product or system are likely to remain effective, whereas experience has shown that even well-designed guards and protective **devices** can fail or be violated and information for use might not be followed.


Guards and protective **devices** shall be used whenever an inherently safe design measure does not reasonably make it possible either to remove hazards or to sufficiently reduce risks. Complementary protective measures involving additional equipment (for example, emergency stop equipment) might have to be implemented.

The end user has a role to play in the risk reduction procedure by complying with the information provided by the designer/supplier. However, information for use shall not be a substitute for the correct application of inherently safe design measures, guards or complementary protective measures."

In general, this principle is used in IEC 62368-1. The table below shows a comparison between the hierarchy required in ISO/IEC Guide 51 and the hierarchy used in IEC 62368-1:2018.

ISO/IEC Guide 51	IEC 62368-1
a) inherently safe design	1. inherently safe design by limiting all energy hazards to class 1
b) guards and protective devices	2. equipment safeguards
	3. installation safeguards
	4. personal safeguards
c) information for end users	5. behavioural safeguards
	6. instructional safeguards

Risk assessment has been considered as part of the development of IEC 62368-1 as indicated in the following from ISO/IEC Guide 51 (Figure 1 in this document). See also the Hazard Based Safety Engineering (HBSE) Process Flow (Figure 2 in this document) that also provides additional details for the above comparison.

^a An example is the risk remaining in a product or a system when supplied to a customer, or in a structural feature, after installation.

Figure 1 – Risk reduction as given in ISO/IEC Guide 51

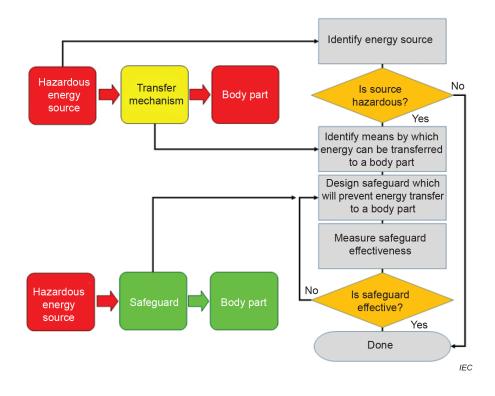


Figure 2 – HBSE Process Chart

0.5.7 Equipment safeguards during skilled person service conditions

- Purpose: To explain the intent of requirements for providing **safeguards** against involuntary reaction.
- Rationale: By definition, a **skilled person** has the education and experience to identify all class 3 energy sources to which he<u>may</u> can be exposed. However, while servicing one class 3 energy source in one location, a **skilled person**-may can be exposed to another class 3 energy source in a different location.

In such a situation, either of two events is possible. First, something-may can cause an involuntary reaction of the **skilled person** with the consequences of contact with the class 3 energy source in the different location. Second, the space in which the **skilled person** is located-may can be small and cramped, and inadvertent contact with a class 3 energy source in the different location-may be is likely.

In such situations, this document may IEC 62368-1:2023 can require an equipment **safeguard** solely for the protection of a **skilled person** while performing servicing activity.

0.10 Thermally-caused injury (skin burn)

Purpose: The requirements basically address **safeguards** against thermal energy transfer by conduction. They do not specifically address safeguards against thermal energy transfer by convection or radiation. However, as the temperatures from hot surfaces due to conduction are always higher than the radiated or convected temperatures, the requirements against convection and radiation are considered to be covered by the requirements against conducted energy transfer.

1 Scope

- Purpose: To identify the purpose and applicability of this document IEC 62368-1:2023 and the exclusions from the scope.
- Rationale: The scope excludes requirements for functional safety. Functional safety is addressed in IEC 61508-1. Because the scope includes computers that may can control safety systems, functional safety requirements would necessarily include requirements for computer processes and software.

The requirements provided in IEC 60950-23-could can be modified and added to IEC 62368 as another -X document. However, because of the hazard-based nature of IEC 62368-1, the requirements from IEC 60950-23 have been incorporated into the body of IEC 62368-1 and made more generic.

The intent of the addition of the IEC 60950-23 requirements is to maintain the overall intent of the technical requirements from IEC 60950-23, incorporate them into IEC 62368-1 following the overall format of IEC 62368-1 and simplify and facilitate the application of these requirements.

Robots traditionally are covered under the scopes of ISO documents, typically maintained by ISO TC 299. ISO TC 299 has working groups for personal care robots and service robots, and produces for example, ISO 13482, *Robots and robotic devices – Safety requirements for personal care robots*.

2 Normative references

The list of normative references is a list of all documents that have a normative reference to them in the body of the document. As such, referenced documents are indispensable for the application of this document IEC 62368-1. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Recently, there were some issues with test houses that wanted to use the latest edition as soon as it was published. As this creates serious problems for manufacturers, since they have no chance to prepare, it was felt to be important that a reasonable transition period-should be taken into account. This is in line with earlier decisions taken by the SMB that allow transition periods to be mentioned in the foreword of the documents. Therefore IEC TC 108 decided to indicate this in the introduction of the normative references clause, to instruct test houses to take into account any transition period, effective date or date of withdrawal established for the document.

These documents are referenced, in whole, in part, or as alternative requirements to the requirements contained in this document IEC 62368-1. Their use is specified, where necessary, for the application of the requirements of this document IEC 62368-1. The fact that a standard is mentioned in the list does not mean that compliance with the document or parts of it is required.

Edition 4.0 2025-07

TECHNICAL REPORT

Audio/video, information and communication technology equipment -Part 2: Explanatory information related to IEC 62368-1:2023

CONTENTS

FC	DREWO)RD	8
IN	NTRODUCTION		
0	Princ	piples of this product safety standard	12
1	Scop	e	15
2	Norm	native references	15
3	Term	ns, definitions and abbreviations	15
4	Gene	eral requirements	
	4.2	Energy source classifications	20
	4.6	Fixing of conductors and conductive parts	24
	4.7	Equipment for direct insertion into mains socket-outlets	25
	4.8	Equipment containing coin or button cell batteries	25
	4.9	Likelihood of fire or shock due to entry of conductive objects	26
5	Elect	trically-caused injury	26
	5.4	Insulation materials and requirements	42
	5.5	Components as safeguards	68
	5.6	Protective conductor	71
	5.7	Prospective touch voltage, touch current and protective conductor current	73
	5.8	Backfeed safeguard in battery backed up supplies	78
6	Elect	trically-caused fire	80
	6.2	Classification of power sources and potential ignition sources	80
	6.3	Safeguards against fire under normal operating conditions and abnormal operating conditions	
	6.4	Safeguards against fire under single fault conditions	90
	6.6	Safeguards against fire due to the connection of additional equipment	115
7	Injury	y caused by hazardous substances	115
8	Mech	nanically-caused injury	119
	8.1	General	119
	8.2	Mechanical energy source classifications	119
	8.3	Safeguards against mechanical energy sources	120
	8.4	Safeguards against parts with sharp edges and corners	121
	8.5	Safeguards against moving parts	
	8.6	Stability of equipment	122
	8.7	Equipment mounted to a wall, ceiling or other structure	123
	8.8	Handle strength	124
	8.9	Wheels or casters attachment requirements	124
	8.10	Carts, stands, and similar carriers	124
	8.11	Mounting means for slide-rail mounted equipment (SRME)	125
9	Ther	mal burn injury	126
	9.1	General	126
	9.2	Thermal energy source classifications	130
	9.3	Touch temperature limits	
	9.4	Safeguards against thermal energy sources	
	9.6	Requirements for wireless power transmitters	
10	Radi	ation	137
	10.2	Radiation energy source classifications	137
	10.3	Safeguards against laser radiation	140

10.4	Safeguards against optical radiation from lamps and lamp systems (including LED types)	
10.5	Safeguards against X-radiation	
10.6	Safeguards against acoustic energy sources	
Annex A	Examples of equipment within the scope of IEC 62368-1	
Annex B	Normal operating condition tests, abnormal operating condition tests	
Annex D	and single fault condition tests	144
B.1	General – Equipment safeguards during various operating conditions	144
B.2 – E	B.3 – B.4 Operating modes	
Annex C	UV radiation	149
Annex D	Test generators	149
Annex E	Test conditions for equipment intended to amplify audio signals	149
Annex F	Equipment markings, instructions, and instructional safeguards	150
F.3	Equipment markings	150
F.4	Instructions	156
F.5	Instructional safeguards	156
Annex G	Components	157
G.1	Switches	157
G.7	Mains power supply cords and interconnection cables	161
G.8	Varistors	
G.9	Integrated circuit (IC) current limiters	162
G.11	Capacitors and RC units	163
G.13	Printed boards	167
G.14	Coatings on component terminals	167
G.15	Pressurized liquid filled components or LFC assemblies	167
Annex H	Criteria for telephone ringing signals	174
H.2	Method A	174
H.3	Method B	176
Annex J	Insulated winding wires for use without interleaved insulation	176
Annex K	Safety interlocks	176
K.7.1	Safety interlocks	176
Annex L	Disconnect devices	177
Annex M	Equipment containing batteries and their protection circuits	178
M.1	General requirements	178
M.2	Safety of batteries and their cells	178
M.3	Protection circuits for batteries provided within the equipment	186
M.4	Additional safeguards for equipment containing a secondary lithium battery	186
Annex O	Measurement of creepage distances and clearances	189
Annex P	Safeguards against conductive objects	190
P.1	General	190
P.2	Safeguards against entry or consequences of entry of a foreign object	190
P.3	Safeguards against spillage of internal liquids	191
P.4	Metallized coatings and adhesives securing parts	192
Annex Q	Circuits intended for interconnection with building wiring	192
Q.2	Test for external circuits – paired conductor cable	192
Annex R	Limited short-circuit test	193
Annex S	Tests for resistance to heat and fire	193

S.1	Flammability test for fire enclosure and fire barrier materials of equipment where the steady-state power does not exceed 4 000 W	193
S.2	Flammability test for fire enclosure and fire barrier integrity	
S.3	Flammability tests for the bottom of a fire enclosure	
S.4	Flammability classification of materials	
S.5	Flammability test for fire enclosure materials of equipment with a steady state power exceeding 4 000 W	
S.6	Grille covering material, cloth, and reticulated foam	195
Annex T	Mechanical strength tests	195
T.2	Steady force test, 10 N	195
Т.3	Steady force test, 30 N	
Т.4	Steady force test, 100 N	
T.5	Steady force test, 250 N	
Т.6	Enclosure impact test	
T.7	Drop test	
Т.8	stress relief test	
T.9	Glass impact test	
T.10	Glass fragmentation test	
Annex U	Mechanical strength of CRTs and protection against the effects of	
-	implosion	196
U.2	Test method and compliance criteria for non-intrinsically protected CRTs	196
Annex V	Determination of accessible parts	
Annex X	Alternative method for determining clearances for insulation in circuits connected to an AC mains not exceeding 420 V peak (300 V RMS)	197
Annex Y	Construction requirements for outdoor enclosures	198
Y.3	Resistance to corrosion	
	(informative) Background information related to the use of surge suppressors	
A.1	Industry demand for incorporating surge suppressors in the equipment	
A.1 A.2	Considerations on surge suppressors bridging both sides of a safeguard	
A.2 A.3	Considerations on a surge suppressors bridging both sides of a safeguard	
A.3	equipment	
A.4	Information about follow current (or follow-on current)	
Annex B	(informative) Background information related to measurement of discharges	
	ining the R-C discharge time constant for X and Y capacitors	215
B.1	General	215
B.2	EMC filters	215
B.3	The safety issue and solution	215
B.4	The requirement	
B.5	100 MΩ probes	216
B.6	The R-C time constant and its parameters	
B.7	Time constant measurement.	220
B.8	Effect of probe resistance	223
B.9	Effect of probe capacitance	
B.10	Determining the time constant	
B.11	Conclusion	
	(informative) Background information related to resistance to candle flame	
Annex D	(informative) Surge suppressers used between mains and an external circuit	
	ecified in Table 13	228

Bibliography	229
Figure 1 – Risk reduction as given in ISO/IEC Guide 51	13
Figure 2 – HBSE Process Chart	14
Figure 3 – Protective bonding conductor as part of a safeguard	17
Figure 4 – Safeguards for protecting an ordinary person	21
Figure 5 – Safeguards for protecting an instructed person	22
Figure 6 – Safeguards for protecting a skilled person	22
Figure 7 – Flow chart showing the intent of the glass requirements	24
Figure 8 – Conventional time/current zones of effects of AC currents (15 Hz to 100 Hz) on persons for a current path corresponding to left hand to feet (see IEC 60479-1:2018, Figure 20)	29
Figure 9 – Conventional time/current zones of effects of DC currents on persons for a longitudinal upward current path (see IEC 60479-1:2018, Figure 22)	30
Figure 10 – Illustration that limits depend on both voltage and current	31
Figure 11 – Typical example	38
Figure 12 – Example 1	39
Figure 13 – Example 2	39
Figure 14 – Flow chart for determining clearances	45
Figure 15 – Illustration of working voltage	46
Figure 16 – Illustration of transient voltages on paired conductor external circuits	48
Figure 17 – Illustration of transient voltages on coaxial-cable external circuits	49
Figure 18 – Examples of transmission mode and applied conductors	50
Figure 19 – Basic and reinforced insulation in Table 14; ratio reinforced to basic	51
Figure 20 – Reinforced clearances according to Rule 1, Rule 2, and Table 14	53
Figure 21 – Example illustrating accessible internal wiring	61
Figure 22 – Waveform on insulation without surge suppressors and no breakdown	63
Figure 23 – Waveforms on insulation during breakdown without surge suppressors	64
Figure 24 – Waveforms on insulation with surge suppressors in operation	64
Figure 25 – Waveform on short-circuited surge suppressor and insulation	64
Figure 26 – Normal operating condition	66
Figure 27 – Single fault condition	66
Figure 28 – Single fault condition; hazardous situation if 5.4.11 is not fulfilled	67
Figure 29 – Parts earthed in one piece of equipment	67
Figure 30 – Equipment 2 with connection to a network	68
Figure 31 – Example for an ES2 source	68
Figure 32 – Example for an ES3 source	69
Figure 33 – Overview of protective conductors	71
Figure 34 – Example of a typical touch current measuring network	74
Figure 35 – Touch current from a floating circuit	
Figure 36 – Touch current from an earthed circuit	
Figure 37 – Summation of touch currents in a PABX	77
Figure 38 – Possible safeguards against electrically-caused fire	
Figure 39 – Fire clause flow chart	87

Figure 40 – Prevent ignition flow chart	93
Figure 41 – Control fire spread summary	94
Figure 42 – Control fire spread PS2	95
Figure 43 – Control fire spread PS3	96
Figure 44 – Fire cone application to a large component	105
Figure 45 – Calculation of side opening size	112
Figure 46 – Flowchart demonstrating the hierarchy of hazard management	118
Figure 47 – Model for chemical injury	119
Figure 48 – Direction of forces to be applied	123
Figure 49 – Model for a burn injury	127
Figure 50 – Model for safeguards against thermal burn injury	129
Figure 51 – Model for absence of a thermal hazard	. 129
Figure 52 – Model for presence of a thermal hazard with a physical safeguard in place	129
Figure 53 – Model for presence of a thermal hazard with behavioural safeguard in place	130
Figure 54 – Direct plug in	
Figure 55 – External power supply	
Figure 56 – Examples of symmetrical single coils	
Figure 57 – LED parameters	
Figure 58 – Flowchart for evaluation of Image projectors (beamers)	
Figure 59 – Graphical representation of L_{Aeq}, T	
Figure 60 – Overview of operating modes	
Figure 61 – Typical examples of class I equipment	
Figure 62 – Typical examples of class I equipment with class II construction	
Figure 63 – Typical examples of class II equipment	
Figure 64 – Typical examples of class II equipment with functional earth	
Figure 65 – Typical examples of class II equipment with functional earth, making use of a class I mains connector	
Figure 66 – Typical examples of class II equipment with functional earth, making use of	
a class I mains connector and a separate functional earthing connection	156
Figure 67 – Voltage-current characteristics (Typical data)	. 158
Figure 68 – Example of IC current limiter circuit	. 163
Figure 69 – Example of application of Rule 3, first dash	. 165
Figure 70 – Example of application of Rule 3, second dash	. 166
Figure 71 – Example on how to use Table G.12	. 166
Figure 72 – Decision flowchart	. 168
Figure 73 – Illustration of a self-contained LFC system	
Figure 74 – Illustration of a modular LFC system	171
Figure 75 – Example illustration of a rack modular LFC subsystems with internal and external connections.	172
Figure 76 – CDU liquid cooling system within a data centre	173
Figure 77 – Non-CDU liquid cooling system within data centre	173
Figure 78 – Current limit curves	. 175
Figure 79 – Example of a dummy battery circuit	187

Figure 80 – Calculating side openings	191
Figure 81 – Example of a circuit with two power sources	193
Figure A.1 – Installation has poor earthing and bonding; equipment damaged (from ITU-T Recommendation K.66)	201
Figure A.2 – Installation has poor earthing and bonding; using main earth bar for protection against lightning strike (from ITU-T Recommendation K.66)	201
Figure A.3 – Installation with poor earthing and bonding, using a varistor	202
Figure A.4 – Typical example of a surge suppressor and a voltage fall	202
Figure A.5 – An example of surge voltage drop by an MOV and two GDTs (measured in laboratory)	204
Figure A.6 – An example of ports of telecommunication equipment	208
Figure A.7 – <i>V-I</i> properties of gas discharge tubes	210
Figure A.8 – Holdover	211
Figure A.9 – Relation of the <i>V-I</i> characteristic of a gas discharge tube and the output characteristic of the power supply	212
Figure A.10 – <i>V</i> - <i>I</i> and <i>V</i> - <i>t</i> characteristics	213
Figure A.11 – Follow-on current pictures	214
Figure B.1 – Typical EMC filter schematic	215
Figure B.2 – 100 MΩ oscilloscope probes	217
Figure B.3 – Combinations of EUT resistance and capacitance for 1 s time constant	219
Figure B.4 – 240 V mains followed by capacitor discharge	221
Figure B.5 – Time constant measurement schematic	222
Figure B.6 – Worst-case measured time constant values for 100 M Ω and 10 M Ω probes	226
Figure D.1 – Example of circuit configuration of a surge suppresser	228
Table 1 – General summary of required safeguards	22
Table 2 – Time/current zones for AC 15 Hz to 100 Hz for hand to feet pathway (see IEC 60479-1:2018, Table 11)	30
Table 3 – Time/current zones for DC for hand to feet pathway (see IEC 60479-1:2018, Table 13)	31
Table 4 – Limit values of accessible capacitance (threshold of pain)	
Table 5 – Total body resistances R_{T} for a current path hand to hand, DC, for large	
surface areas of contact in dry condition	36
Table 6 – Insulation requirements for external circuits	49
Table 7 – Voltage drop across clearance and solid insulation in series	55
Table 8 – Examples of application of various safeguards	86
Table 9 – Basic safeguards against fire under normal operating conditions and abnormal operating conditions	89
Table 10 – Supplementary safeguards against fire under single fault conditions	90
Table 11 – Method 1: Reduce the likelihood of ignition	92
Table 12 – Method 2: Control fire spread	100
Table 13 – Fire barrier and fire enclosure flammability requirements	107
Table 14 – Summary – Fire enclosure and fire barrier material requirements	111
Table 15 – Control of chemical hazards	117
Table 16 – Overview of requirements for dose-based systems	143

Table 17 – Overview of supply voltage	147
Table 18 – Safety of batteries and their cells – requirements (expanded information on documents and scope)	180
Table A.1 – Permissible power-frequency stress voltage (except for US and Japan)	204
Table A.2 – TOV parameters for US systems quoted from IEC 61643-12:2020	205
Table A.3 – TOV test parameters for Japanese systems quoted from IEC 61643-12:2020	205
Table A.4 – Peak voltage of TOV in countries conforming to IEC 60364-4-44	206
Table A.5 – Peak voltage of TOV in USA	206
Table A.6 – Peak voltage of TOV in Japan	206
Table A.7 – The value of U_{peak2} for major mains voltages	207
Table B.1 – 100 MΩ oscilloscope probes	217
Table B.2 – Capacitor discharge	218
Table B.3 – Maximum $T_{measured}$ values for combinations of R_{EUT} and C_{EUT} for T_{EUT} of 1 s	225

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Audio/video, information and communication technology equipment -Part 2: Explanatory information related to IEC 62368-1:2023

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 62368-2 has been prepared by IEC technical committee TC 108: Safety of electronic equipment within the field of audio/video, information technology and communication technology. It is a Technical Report.

This fourth edition cancels and replaces the third edition published in 2018. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) It takes into account changes made in the fourth edition of IEC 62368-1 (IEC 62368-1:2023) as identified in the Foreword of IEC 62368-1:2023.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
108/794/DTR	108/825/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

In this document, the following print types are used:

- notes/explanatory matter: in smaller roman type;
- tables and figures that are included in the rationale have linked fields (shaded in grey if "field shading" is active);
- terms that are defined in IEC 62368-1: in **bold type**.

Where coloured shading is used:

- green colour stands for level 1 energy sources
- yellow/orange colour stands for level 2 energy sources
- red colour stands for level 3 energy sources.

In this document, where the term (HBSDT) is used, it stands for Hazard Based Standard Development Team, which is the Working Group of IEC TC 108 responsible for the development and maintenance of IEC 62368-1.

A list of all parts of the IEC 62368 series can be found, under the general title Audio/video, information and communication technology equipment, on the IEC website.

In this document, only those subclauses from IEC 62368-1 considered to need further background reference information or explanation to benefit the user in applying the relevant requirements are included. Therefore, not all numbered subclauses are cited. Unless otherwise noted, all references are to clauses, subclauses, annexes, figures or tables located in IEC 62368-1:2023.

The entries in this document can have one or two of the following subheadings in addition to the Rationale statement:

Source – where the source is known and is a document that is accessible to the general public, a reference is provided.

Purpose – where there is a need and when it can prove helpful to the understanding of the Rationale, a Purpose statement has been added.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

IEC 62368-1 is based on the principles of hazard-based safety engineering, which is a different way of developing and specifying safety considerations than that of the current practice. While IEC 62368-1 is different from traditional IEC safety documents in its approach and while it is believed that IEC 62368-1 provides a number of advantages, its introduction and evolution are not intended to result in significant changes to the existing safety philosophy that led to the development of the safety requirements contained in IEC 60065 and IEC 60950-1. The predominant reason behind the creation of IEC 62368-1 is to simplify the problems created by the merging of the technologies of ITE and CE. The techniques used are novel, so a learning process and experience in its application are needed.

0 Principles of this product safety standard

Clause 0 is informative and provides a rationale for the normative clauses of IEC 62368-1:2023.

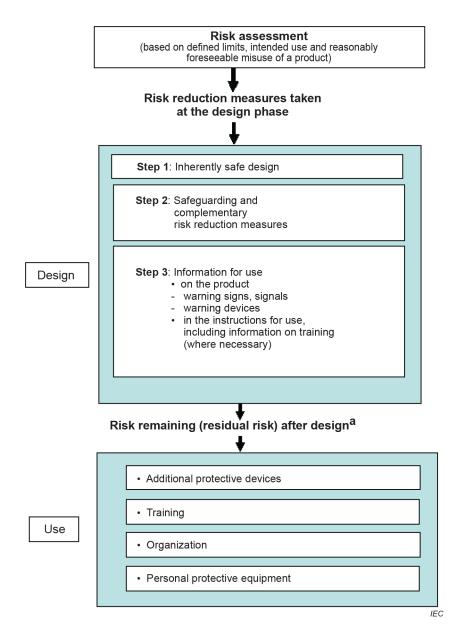
0.5.1 General

ISO/IEC Guide 51:2014, 6.3.5 states:

"When reducing risks, the order of priority shall be as follows:

- a) inherently safe design;
- b) guards and protective **devices**;
- c) information for end users.

Inherently safe design measures are the first and most important step in the risk reduction process. This is because protective measures inherent to the characteristics of the product or system are likely to remain effective, whereas experience has shown that even well-designed guards and protective **devices** can fail or be violated and information for use might not be followed.


Guards and protective **devices** shall be used whenever an inherently safe design measure does not reasonably make it possible either to remove hazards or to sufficiently reduce risks. Complementary protective measures involving additional equipment (for example, emergency stop equipment) might have to be implemented.

The end user has a role to play in the risk reduction procedure by complying with the information provided by the designer/supplier. However, information for use shall not be a substitute for the correct application of inherently safe design measures, guards or complementary protective measures."

In general, this principle is used in IEC 62368-1. The table below shows a comparison between the hierarchy required in ISO/IEC Guide 51 and the hierarchy used in IEC 62368-1.

ISO/IEC Guide 51	IEC 62368-1
a) inherently safe design	1. inherently safe design by limiting all energy hazards to class 1
b) guards and protective devices	2. equipment safeguards
	3. installation safeguards
	4. personal safeguards
c) information for end users	5. behavioural safeguards
	6. instructional safeguards

Risk assessment has been considered as part of the development of IEC 62368-1 as indicated in the following from ISO/IEC Guide 51 (Figure 1 in this document). See also the Hazard Based Safety Engineering (HBSE) Process Flow (Figure 2 in this document) that also provides additional details for the above comparison.

^a An example is the risk remaining in a product or a system when supplied to a customer, or in a structural feature, after installation.

Figure 1 – Risk reduction as given in ISO/IEC Guide 51

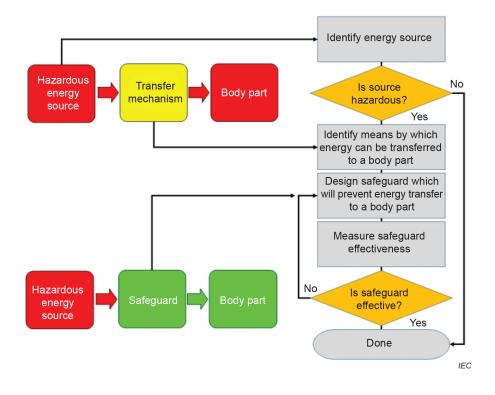


Figure 2 – HBSE Process Chart

0.5.7 Equipment safeguards during skilled person service conditions

- Purpose: To explain the intent of requirements for providing **safeguards** against involuntary reaction.
- Rationale: By definition, a **skilled person** has the education and experience to identify all class 3 energy sources to which he can be exposed. However, while servicing one class 3 energy source in one location, a **skilled person** can be exposed to another class 3 energy source in a different location.

In such a situation, either of two events is possible. First, something can cause an involuntary reaction of the **skilled person** with the consequences of contact with the class 3 energy source in the different location. Second, the space in which the **skilled person** is located can be small and cramped, and inadvertent contact with a class 3 energy source in the different location is likely.

In such situations, IEC 62368-1:2023 can require an equipment **safeguard** solely for the protection of a **skilled person** while performing servicing activity.

0.10 Thermally-caused injury (skin burn)

Purpose: The requirements basically address **safeguards** against thermal energy transfer by conduction. They do not specifically address safeguards against thermal energy transfer by convection or radiation. However, as the temperatures from hot surfaces due to conduction are always higher than the radiated or convected temperatures, the requirements against convection and radiation are considered to be covered by the requirements against conducted energy transfer.

1 Scope

- Purpose: To identify the purpose and applicability of IEC 62368-1:2023 and the exclusions from the scope.
- Rationale: The scope excludes requirements for functional safety. Functional safety is addressed in IEC 61508-1. Because the scope includes computers that can control safety systems, functional safety requirements would necessarily include requirements for computer processes and software.

The requirements provided in IEC 60950-23 can be modified and added to IEC 62368 as another -X document. However, because of the hazard-based nature of IEC 62368-1, the requirements from IEC 60950-23 have been incorporated into the body of IEC 62368-1 and made more generic.

The intent of the addition of the IEC 60950-23 requirements is to maintain the overall intent of the technical requirements from IEC 60950-23, incorporate them into IEC 62368-1 following the overall format of IEC 62368-1 and simplify and facilitate the application of these requirements.

Robots traditionally are covered under the scopes of ISO documents, typically maintained by ISO TC 299. ISO TC 299 has working groups for personal care robots and service robots, and produces for example, ISO 13482, *Robots and robotic devices – Safety requirements for personal care robots*.

2 Normative references

The list of normative references is a list of all documents that have a normative reference to them in the body of the document. As such, referenced documents are indispensable for the application of IEC 62368-1. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Recently, there were some issues with test houses that wanted to use the latest edition as soon as it was published. As this creates serious problems for manufacturers, since they have no chance to prepare, it was felt to be important that a reasonable transition period be taken into account. This is in line with earlier decisions taken by the SMB that allow transition periods to be mentioned in the foreword of the documents. Therefore IEC TC 108 decided to indicate this in the introduction of the normative references clause, to instruct test houses to take into account any transition period, effective date or date of withdrawal established for the document.

These documents are referenced, in whole, in part, or as alternative requirements to the requirements contained in IEC 62368-1. Their use is specified, where necessary, for the application of the requirements of IEC 62368-1. The fact that a standard is mentioned in the list does not mean that compliance with the document or parts of it is required.